

Highly Accurate Photorealistic Modeling of Cultural Heritage Assets

Peter Dorninger > 4D-IT GmbH

p.dorninger@4d-it.com

Vienna, 17th November 2010

Motivation

Requirements for Documentation and Visualization are different:

Documentation Model

- Geometrically accurate representation of object
- Geometrically rich in detail
- Foundation for
 - Planning
 - Restoration
 - Monitoring
 - etc.

Visualization

- Geometrically generalized to support rendering requirements
- Richness in detail through texture
- Foundation for
 - Visual Inspection
 - Marketing
 - Public Relations
 - etc.

What are the requirements to generate multipurpose geometric models?

Motivation

- Fast data acquisition:
 - Provided by Laserscanning with > 1 mio points per second
- Automation in data processing:
 - Realize efficient workflows
 - Develop automated methods

- Archaeology
- Cultural heritage
- Virtual museum
- etc.

Examples

- Staircase at Schönbrunn Palace:
 - Restoration Documentation & Change Detection
- Fountain at Schönbrunn Palace:
 - Restoration Documentation
 - Visualization
- Ephesos Terrace House 2
 - Archaeological Analysis
- Exhibits
 - Documentation
 - Visualization
 - Marketing

Restoration of staircase at Schloß Schönbrunn

- Data acquisition
 - Campaign 2007 (before restoration):
 - Campaign 2008 (after restoration):

42 scans à ~ 15 mio points 41 scans à ~ 15 mio points 1,300 mio points

- Processing effort per campaign
 - Scanning:

- ~ 24 hours
- **3D-filtering (automated):**
- Registration (automated):
- Merging and triangulation:

(incl. tachymetric measurement for registration)

~ 48 hours (~ 1 hour per scan)

(PC: 8-core, 16 GB RAM, 64 bit-Windows)

- ~8 hours
 - ~8 hours

(incl. ~ 2 hours of interactive work)

3D-Model

- Model after restoration
 - Point cloud after 3D-filtering and registration: ~ 23 mio points
 - Triangulation model:

~ 23 mio points ~ 11 mio triangles

- Differences before vs. after restoration
 - unchanged: \pm 1 cm (~ accuracy)
 - maximal differences: \pm 5 cm

[cm]

3

0

-1

-2 -3 -4 -5

- Differences before vs. after restoration
 - unchanged: ± 1 cm (~ accuracy)
 - maximal differences: \pm 5 cm

4D-IT GmbH

Vertical Structures

3D-Model

Fountain at Schloß Schönbrunn

- 43 scans: ~ 6 hours sampling distance: ~ 1.5 to 3 mm (per scan) scanning distance: ~ 3-6 m object height: ~ 3.5 m object diameter: ~ 4.5 m
- local registration: ~ 3 hours

3D-Model Analysis & Rendering

Fountain at Schloß Schönbrunn

Rendering with artificial texture

3D-Model and Rendering

Attika Sculpture – Schloß Schönbrunn

Rendering – Animation

Documentation Model

- Data acquisition
 - Mai/June 2010:

172 scans à ~ 60 mio points (incl. roof construction) 10,000 mio points

- Processing effort per campaign
 - Scanning:
 - **3D-filtering (automated):**
 - —
 - Registration (automated):
 - Merging (automated):
 - Triangulation

~ 7 days (1 person)

(+ tachymetric measurement for registration)

~ 168 hours (~ 1 hour per scan)

(PC: 8-core, 16 GB RAM, 64 bit-Windows)

- ~ 8 hours (single core)
- ~ 8 hours

500 mio points (glob. analysis: 125 mio) only partially

[in cooperation with ÖAW (Rathmayr, Adenstedt) and TU Wien-E280 (Kalasek), FWF project P 22102]

Vertical Structures

Wall Projection

Sacred Cup

- Close range scanning
 - Scanning: FaroArm @ ~15 min
 - Images: Canon 20D @ ~15 min

Animation

- Data acquisition
 - Faro Photon 80
 77 scans @ ~10 hours
 3 mm @ 5 m
 - Canon 20D, 14-18mm
 ~5 hours

Polar image of point cloud (intensity)

Point cloud after filtering

iPhone-App

 \Box

>

3

 \Box

Conclusions

- 3D-documentation model generation from TLS data allows for automation
- By appropriate generalization and by integrating textures, the same model are appropriate for visualization
- Such multipurpose models opens extensive fields of applications
 - documentation: Distinct objects and whole sites
 - analysis: Change detection, mapping, etc.
 - public relations: From huge projection installation to website and smartphone representation

FROM A VISION TO REALITY

Contact:

Peter Dorninger

p.dorninger@4d-it.com

Further Information: 4D-IT GmbH, Austria

http://www.4d-it.com

-